How Magnification of the Root-Mean-Square Deviation (RMSD) Value Affects the Convergence Speed of Hopfield Neural Network Classifier

نویسنده

  • RACHID SAMMOUDA
چکیده

The Root Mean Square-Deviation (RMSD) or Root Mean Square Error (RMSE) is the frequently used measure of the difference between values predicted by a model or an estimator and the values actually observed from that which is being modelled or estimated. In this paper, we show that the magnification of the RMSE, when used with the classifier Hopfield Neural Network (HNN), may help the network to converge earlier to the same optima reached using the simple RMSE. The segmentation problem of liver pathological images is formulated in energy function as a magnified sum of all neurons’ deviations from their actual clusters, and HNN iterates with respect to the winner-takes-all rule in order to minimize the energy function to a local optimum close to the global one. Twenty liver color images were used in this study. Their segmentation results with their corresponding quantitative analysis show that our approach makes the results more reliable for use as input data to a computer aided diagnosis of liver cancer. Key-Words: Hopfield Neural Network, Optimization, Mean-Square-Error, Magnification, Segmentation, pathological liver color image

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network

The optimum design of solar energy systems strongly depends on the accuracy of  solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322  N lo...

متن کامل

Modification of the mean-square error principle to double the convergence speed of a special case of Hopfield neural network used to segment pathological liver color images

BACKGROUND This paper analyzes the effect of the mean-square error principle on the optimization process using a Special Case of Hopfield Neural Network (SCHNN). METHODS The segmentation of multidimensional medical and colour images can be formulated as an energy function composed of two terms: the sum of squared errors, and a noise term used to avoid the network to be stacked in early local ...

متن کامل

RMSD Protein Tertiary Structure Prediction with Soft Computing

Root-mean-square-deviation (RMSD) is an indicator in protein-structure-prediction-algorithms (PSPAs). Goal of PSP algorithms is to obtain 0 Å RMSD from native protein structures. Protein structure and RMSD prediction is very essential. In 2013, the estimated RMSD proteins based on nine features were obtained best results using D2N (Distance to the native). We presented in This paper proposed ap...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Training Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset

Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008